Penggunaan Turunan Kedua
Assalamualaikum warahmatullahi wabarakatuh, Saya Miko Caesar akan membahas penggunaan Turuan kedua serta grafik fungsinya . Lansung saja dibahas :
Kecekungan dan Uji Turunan Kedua
Pada pembahasan ini kita akan berlatih untuk melakukan hal-hal berikut.
- Menentukan selang di mana suatu fungsi cekung ke atas atau cekung ke bawah.
- Menemukan titik belok grafik suatu fungsi.
- Menerapkan Uji Turunan Kedua untuk menemukan nilai ekstrim suatu fungsi
Kecekungan
Karakteristik suatu fungsi yang naik atau turun dapat kita gunakan untuk mendeskripsikan grafik fungsi tersebut. Selain itu, apabila kita tahu dimana letak selang yang membuat f ’ naik atau turun maka kita dapat menentukan di mana grafik fungsi f akan cekung ke atas atau cekung ke bawah.
Definisi Kecekungan
Misalkan f terdiferensialkan pada selang buka I. Grafik f akan cekung ke atas pada I jika f ’ naik pada selang tersebut dan akan cekung ke bawah pada I jika f ’ turun pada selang tersebut.
Interpretasi grafis kecekungan dari suatu fungsi berikut akan sangat berguna.
- Misalkan f terdiferensialkan pada selang buka I. Jika grafik f cekung ke atas pada I, maka grafik f berada di atas semua garis singgungnya pada selang tersebut. (Lihat gambar (a) di bawah).
- Misalkan f terdiferensialkan pada selang buka I. Jika grafik f cekung ke bawah pada I, maka grafik f berada di bawah semua garis singgungnya pada selang tersebut. (Lihat gambar (b) di bawah).
Untuk menemukan selang buka di mana suatu grafik fungsi f cekung ke atas atau cekung ke bawah, kita harus menemukan selang di mana f ’ naik atau turun. Sebagai contoh, grafik
akan terbuka ke bawah pada selang buka (–∞, 0) karena
turun pada selang tersebut. Demikian pula, grafik f akan cekung ke atas pada selang (0, ∞) karena f ’ naik pada selang tersebut. Perhatikan gambar di bawah.
Teorema berikutnya menunjukkan bagaimana penggunaan turunan kedua suatu fungsi untuk menentukan selang di mana grafik f tersebut cekung ke atas atau cekung ke bawah. Bukti teorema ini merupakan akibat langsung dari Teorema Uji Fungsi Naik dan Turun, dan definisi kecekungan.
Teorema Uji Kecekungan
Misalkan f adalah suatu fungsi yang turunan keduanya ada pada selang buka I.
- Jika f ”(x) > 0 untuk semua x dalam I, maka grafik f cekung ke atas pada I.
- Jika f ”(x) < 0 untuk semua x dalam I, maka grafik f cekung ke bawah pada I.
Untuk menerapkan Teorema Uji Kecekungan, tentukan lokasi nilai-nilai x sedemikian sehingga f ”(x) = 0 atau f ” tidak ada. Gunakan nilai-nilai x tersebut untuk menentukan selang uji. Kemudian, ujilah tanda f ”(x) pada masing-masing selang uji.
Contoh 1: Menentukan Kecekungan
Tentukan selang buka sedemikian sehingga grafik
cekung ke atas atau cekung ke bawah.
Pembahasan Jelas bahwa fungsi yang diberikan kontinu pada seluruh garis bilangan real. Selanjutnya, kita tentukan turunan kedua fungsi f.
Karena f ”(x) = 0 ketika x = ±1 dan f ” terdefinisi pada keseluruhan garis bilangan real, kita harus menguji f ” dalam selang (–∞, –1), (–1, 1), dan (1, ∞). Hasil pengujian ketiga selang tersebut dirangkum dalam tabel berikut.
Grafik fungsi f dapat dilihat pada gambar di bawah ini.
Fungsi yang diberikan dalam Contoh 1 kontinu pada keseluruhan garis bilangan real. Jika ada nilai-nilai x yang menyebabkan fungsi tidak kontinu, nilai-nilai tersebut harus digunakan bersama dengan titik-titik yang menyebabkan f ”(x) = 0 atau f ”(x) tidak ada, untuk membentuk selang-selang uji.
Contoh 2: Menentukan Kecekungan
Tentukan selang buka sedemikian sehingga grafik
cekung ke atas atau cekung ke bawah.
Pembahasan Dengan menurunkan fungsi yang diberikan dua kali, dihasilkan
Berdasarkan turunan kedua f tersebut, kita dapat melihat bahwa tidak ada nilai x yang menyebabkan f ”(x) = 0, tetapi pada x = ±2, fungsi f tidak kontinu. Jadi, kita harus menguji kecekungan pada selang-selang (–∞,–2), (–2, 2), dan (2, ∞), seperti yang ditunjukkan tabel berikut.
Grafik fungsi f ditunjukkan oleh gambar di bawah ini.
Titik Belok
Grafik fungsi pada Contoh 1 memiliki dua titik di mana kecekungan grafik tersebut berubah. Jika grafik suatu fungsi memiliki garis singgung pada titik yang seperti itu, maka titik tersebut dinamakan titik belok. Tiga jenis titik belok dapat ditunjukkan oleh gambar di bawah ini.
Definisi Titik Belok
Misalkan f adalah fungsi yang kontinu pada selang buka, dan c adalah titik pada selang tersebut. Jika grafik f memiliki garis singgung pada titik (c, f(c)), maka titik ini merupakan titik belok grafik f ketika kecekungan f berubah dari cekung ke atas menjadi cekung ke bawah (atau sebaliknya) pada titik tersebut.
Untuk menentukan letak titik belok, kita tentukan nilai x yang membuat f ”(x) = 0 atau f ”(x) tidak ada. Hal ini serupa dengan prosedur dalam menentukan letak titik ekstrim lokal f.
Teorema Titik Belok
Jika (c, f(c)) merupakan titik belok grafik f, maka f ”(c) = 0 atau f ” tidak ada pada x = c.
Contoh 3: Menemukan Titik Belok
Tentukan titik-titik belok grafik,
dan tentukan kecekungan grafik fungsi tersebut.
Pembahasan Untuk menentukan titik-titik belok grafik fungsi yang diberikan, pertama kita tentukan turunan kedua fungsi tersebut.
Dengan membuat f ”(x) = 0, kita dapat menentukan bahwa kemungkinan titik-titik beloknya terjadi pada x = 0 dan x = 2. Dengan menguji selang yang ditentukan oleh nilai-nilai x tersebut, kita bisa menyimpulkan bahwa kedua titik tersebut merupakan titik-titik belok grafik f. Perhatikan tabel berikut.
Jadi, grafik fungsi f memiliki titik belok pada (0, 0) dan (2, –16). Grafik fungsi f dapat ditunjukkan oleh gambar di bawah ini.
Konvers Teorema Titik Belok tidak sepenuhnya benar, karena terdapat kemungkinan bahwa turunan kedua suatu fungsi pada titik tertentu sama dengan nol tetapi titik tersebut bukanlah titik belok. Misalnya, grafik f(x) = x4 seperti yang ditunjukkan gambar di bawah. Turunan kedua fungsi tersebut sama dengan nol ketika x = 0, tetapi titik (0, 0) bukanlah titik belok karena grafik f cekung ke atas pada selang (–∞, 0) dan (0, ∞).
Uji Turunan Kedua
Sebagai tambahan untuk menguji kecekungan, turunan kedua dapat digunakan untuk untuk melakukan pengujian terhadap maksimum dan minimum lokal. Pengujian ini berdasarkan fakta bahwa jika suatu grafik fungsi f cekung ke atas pada selang buka yang memuat c, dan f ’(c) = 0, maka f(c) haruslah minimum lokal f. Demikian juga, jika grafik suatu fungsi f cekung ke bawah pada selang buka yang memuat c, dan f ’(c) = 0, maka f(c) haruslah maksimum lokal f. Perhatikan gambar di bawah ini.
Teorema Uji Turunan Kedua
Misalkan f fungsi kontinu sedemikian sehingga f ’(c) = 0 dan turunan keduanya ada pada selang buka yang memuat c.
- Jika f ”(c) > 0, maka f memiliki minimum lokal pada (c, f(c)).
- Jika f ”(c) < 0, maka f memiliki maksimum lokal pada (c, f(c)).
Jika f ”(c) = 0, maka pengujiannya gagal, atau dengan kata lain, f mungkin memiliki maksimum lokal, minimum lokal, atau tidak memiliki keduannya. Pada kasus ini, kita harus menggunakan Uji Turunan Pertama.
Pembuktian Jika f ’(c) = 0 dan f ”(c) > 0, maka ada selang buka I yang memuat c sedemikian sehingga
untuk semua x ≠ c dalam I. Jika x < c, maka f ’(x) < 0. Demikian juga, jika x > c, maka x – c > 0 dan f ’(x) > 0. Jadi, f ’(x) berubah dari negatif menjadi positif pada c, dan berdasarkan Uji Turunan Pertama, f(c) merupakan minimum lokal f. Pembuktian kasus kedua serupa dengan pembuktian kasus pertama tersebut.
Contoh 4: Menggunakan Uji Turunan Kedua
Tentukan ekstrim lokal
Pembahasan Pertama kita tentukan turunan pertama fungsi tersebut.
Berdasarkan turunan ini, kita dapat melihat bahwa hanya x = –1, 0, dan 1 yang menjadi nilai kritis f. Dengan menemukan turunan keduanya
kita dapat menerapkan Uji Turunan Kedua seperti yang ditunjukkan oleh tabel berikut.
Karena Uji Turunan Kedua gagal pada (0, 0), kita dapat menggunakan Uji Turunan Pertama dan melihat bahwa f naik dari kiri ke kanan x = 0. Sehingga, (0, 0) bukanlah minimum lokal ataupun maksimum lokal. Grafik f tersebut ditunjukkan oleh gambar berikut.
Sumber :
Sekian dari saya semoga bermanfaat dan saya ucapkan terimakasi banyak !!!!!
Comments
Post a Comment